& , Data-driven dynamic decision models, in L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, & M. D. Rossetti (eds.), Proceedings of the 2015 Winter Simulation Conference, 2752-2763 (IEEE Press ). DOI  PDF SSRN


This article outlines a method for automatically generating models of dynamic decision-making that both have strong predictive power and are interpretable in human terms. This is useful for designing empirically grounded agent-based simulations and for gaining direct insight into observed dynamic processes. We use an efficient model representation and a genetic algorithm-based estimation process to generate simple approximations that explain most of the structure of complex stochastic processes. This method, implemented in C^++^ and R, scales well to large data sets. We apply our methods to empirical data from human subjects game experiments and international relations. We also demonstrate the method's ability to recover known data-generating processes by simulating data with agent-based models and correctly deriving the underlying decision models for multiple agent models and degrees of stochasticity.

«  Environment, political economies, and livelihood change | Beyond gridlock »