Airborne gas chromatograph for in situ measurements of long-lived species in the upper troposphere and lower stratosphere

J. W. Elkins¹, D. W. Fahey², J. M. Gilligan¹,³, G. S. Dutton¹,³, T. J. Baring¹,³, C. M. Volkl¹,³, R. E. Dunn¹,³, R. C. Myers¹, S. A. Montzka¹, P. R. Wamsley¹,³, A. H. Hayden¹,³, J. H. Butler¹, T. M. Thompson¹, J. T. Swanson¹, E. J. Dlugokencky¹, P. C. Novelli¹, D. F. Hurst¹, J. M. Lobert¹,³, S. J. Ciciora²,³, R. J. McLaughlin², T. L. Thompson², R. H. Winkler², P. J. Fraser⁶,⁷, L. P. Steele⁶,⁷, M. P. Lucarelli⁶,⁷

Abstract. A new instrument, the Airborne Chromatograph for Atmospheric Trace Species IV (ACATS-IV), for measuring long-lived species in the upper troposphere and lower stratosphere is described. Using an advanced approach to gas chromatography and electron capture detection, the instrument can detect low levels of CFC-11 (CCl₃F), CFC-12 (CCl₂F₂), CFC-113 (CCl₂F-CF₃), methyl chloroform (CH₃CCl₃), carbon tetrachloride (CCl₄), nitrous oxide (N₂O), sulfur hexafluoride (SF₆), Halon-1211 (CBrClF₂), hydrogen (H₂), and methane (CH₄) acquired in ambient samples every 180 or 360 s. The instrument operates fully-automated onboard the NASA ER-2 high-altitude aircraft on flights lasting up to 8 hours or more in duration. Recent measurements include 24 successful flights covering a broad latitude range (70°S-61°N) during the Airborne Southern Hemisphere Ozone Experiment/Measurements for the Effects of Stratospheric Aircraft (ASHOE/MAESA) campaign in 1994.

Introduction

The Earth's atmosphere contains a variety of long-lived gaseous species that reflect emissions at the surface. Chlorofluorocarbons (CFCs), as well as other chlorine- and bromine-containing species, are emitted at the Earth's surface and carried to the stratosphere, where they are destroyed by photochemical processes, liberating chlorine (Cl) and bromine (Br) radicals [Molina and Rowland, 1974; WMO, 1995]. Recent ground-based measurements show that the growth rates of principal CFCs are declining as a result of the United Nations Montreal Protocol [Elkins et al., 1993]. As greenhouse gases, the growth of CFCs, N₂O, and CH₄ emissions are included in scenarios used to evaluate global warming [IPCC, 1995]. In the stratosphere, N₂O and CH₄ are source gases for reactive nitrogen (NOy) [Fahney et al., 1990] and water vapor (H₂O), respectively.

Defining the distribution and growth rates of these various long-lived species requires the use of instrumentation that has suitable precision and accuracy and can be adapted to appropriate sampling platforms. Efforts in ground-based monitoring have shown continued success [Fraser et al., 1994]. However, attempts to make in situ measurements in the stratosphere have proven to be more difficult as a result of the inherent restrictions of aircraft and balloon platforms. Precise measurements above the tropopause involve samples collected in cans or otherwise trapped onto absorbents and subsequently analyzed with laboratory instruments [Heidt et al., 1989; Goldan et al., 1980; Schmidt et al., 1991]. Although an advantage of grab samples is that many species can be detected and quantified, disadvantages include potential changes in sample composition during storage and a limited number of samples per flight.

An alternative is the operation of an in situ gas chromatograph (GC). Airborne GCs have been used on medium-altitude aircraft for measurements of CFC-11, CFC-12, CCl₄, and N₂O [Bamber et al., 1984; Tyson et al., 1978] and for the measurement of peroxyacetyl nitrate and other hydrocarbon species [Ridley et al., 1990; Singh et al., 1990]. Measurements on high-altitude aircraft include those of CFC-11, CFC-12, and N₂O made with 12 min resolution on the NASA U-2 aircraft [Vesilind et al., 1983].

We describe a new airborne GC that operates onboard the NASA ER-2 high-altitude aircraft. The instrument expands and improves upon the design of the first ACATS GC that operated on the ER-2 aircraft as a one-channel electron capture detector (ECD) for CFC-11 and CFC-12 and N₂O and NOy [Fahney et al., 1990]. The new GC incorporates a number of features that are useful for other field applications where a high degree of precision and miniaturization of components are required.

Experimental

Sampling. ACATS-IV is located in the Q-bay of the ER-2 fuselage, forward of the NOAA NOy instrument. The basic rectangular enclosure measures 84 W x 49 H x 32 L cm (0.13 m³) and weighs 52 kg (Figure 1). The enclosure includes all components except the gas cylinders and pump which amount to an additional 15 kg. The ACATS diaphragm pump is located inside the NOy instrument enclosure. A single motor (400 Hz, 1.6 Hp) operates the ACATS-IV pump and the vacuum pump for the NOy instrument. Power to ACATS-IV is supplied as 24 DC (300 W peak, ~160 W continuous) and 120 VAC (400 Hz, 680 W peak, ~420 W continuous) from the aircraft power system.

The pump pressurizes the sample loops with ambient air drawn through an L-shaped inlet line (6.4 mm outside diameter, o. d.) located on the lower Q-bay hatch. The pump is a dual-head diaphragm compression unit (KNF Neuberger Model NT25.3-STR, Trenton, NJ) with Teflon and stainless steel surfaces. At inlet pressures between 50 and 1000 mbar, the pump maintains a continuous flow of ~200 STP cm³ min⁻¹ (sccm) through the sample loops.

Compressed gas cylinders are used to store both carrier gases (refilled every flight from bulk tanks) and the calibrated compressed gas cylinders are used to store both carrier gases (refilled every flight from bulk tanks) and the calibrated
standard mixture (refilled every 3-4 flights). Three (standard and nitrogen, N\textsubscript{2}) and 1-L (P-5, 5\% CH\textsubscript{4} in argon, Ar) aluminum cylinders reinforced with Kevlar and fiberglass (Structural Composites Ind., Pomona, CA) allow a working pressure of 20 MPa (3000 psi) with minimum weight. The cylinders are mounted outside the main ACATS-IV enclosure in combination with gases used in the NOy instrument. The carrier gases are scrubbed through heated zirconium, hopcalite (MnO\textsubscript{2} (Structural Composites Ind., Pomona, CA) allow a working pressure of 20 MPa (3000 psi) with minimum weight. The cylinders are mounted outside the main ACATS-IV enclosure in combination with gases used in the NOy instrument. The carrier gases are scrubbed through heated zirconium, hopcalite (MnO\textsubscript{2} and CuO), Sofracat (Molecular Products, Thaxted, UK), and molecular sieve 13X traps. Because ACATS-IV consumes only small quantities of zero air (79\% N\textsubscript{2}, 21\% O\textsubscript{2}), this gas is provided by the NOy instrument. The addition of -15 parts per million (ppm) of N\textsubscript{2}O to the make-up inlet of the ECD on pressure of 20 MPa (3000 psi) with minimum weight. The ECDs, GSVs, and stream selection valve (SSV) are all enclosed in separate housings that are thermostated and purged with a continuous flow of carrier gas with operational parameters listed in Figure 1 and Table 1. The purge flows reduce the impact of small leaks into the carrier and sample flows upstream of the ECD and allow pressurization to 975 mbar using an absolute backpressure relief valve (Tavco, Chatsworth, CA). All purge assemblies are supplied with N\textsubscript{2} at -3-10 sccm, and the make-up line into each ECD has a carrier gas purge of -3-5 sccm to protect the ECD in case the GSV accidentally shuts off the flow. Purge flows that remain constant and SF\textsubscript{6} on channel 3, CFC-12 and Halon-1211; and on channel 4, H\textsubscript{2} and CH\textsubscript{4}.

Figure 1. (a) Schematic of the ACATS-IV instrument showing pressure transducers (P), electron capture detectors (ECD), gas sampling valves (GSV), and the stream selection valve (SSV). Shaded areas are temperature-controlled zones where the temperatures for the GSV, SSV, and flow module are indicated. ECD and sample loop pressure controllers use a valve (MKS Instruments, Inc., Andover, MA) servo-controlled to a pressure gauge (Micro Gage, Inc., El Monte, CA). (b) The first position of the 12-port GSV loads the sample loop, backflushes the pre-column, and moves the peaks of interest from the previous sample injection into the ECD. (c) Turning the rotor of the 12-port GSV injects the sample onto the columns and diverts the column exhaust away from the ECD.

Table 1. Final Chromatographic Parameters for ACATS-IV During the Fourth Deployment of ASHOE/MAESA

<table>
<thead>
<tr>
<th>Channel No. (Carrier Gas)</th>
<th>Gas Chromatographic Stainless Steel Columns: Packing Material, Outside Diameter (Inside Diameter), Lengths</th>
<th>Main (Pre-column) Flow, sccm</th>
<th>Mode (GSV Switch time, s)</th>
<th>Column Temp °C</th>
<th>Loop Size (cm<sup>3</sup>)</th>
<th>ECD Temp. °C</th>
<th>ECD Current (nA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (N\textsubscript{2})</td>
<td>3% OV-101 on Chromosorb, 3.2 (2.2) mm, Main: 3.6 m; Pre-column: 1.2 m</td>
<td>75 (48)</td>
<td>12-port (72)</td>
<td>45</td>
<td>2.5</td>
<td>350</td>
<td>1.3</td>
</tr>
<tr>
<td>2 (P-5)</td>
<td>Porapak Q, 4.8 (3.8) mm, Main: 3 m; Pre-column: 2 m</td>
<td>40 (52)</td>
<td>12-port (200)</td>
<td>95</td>
<td>7.5</td>
<td>360</td>
<td>0.18</td>
</tr>
<tr>
<td>3 (N\textsubscript{2})</td>
<td>Main: 20 % OV-101 on Chromosorb, 4 m, 4.8 (3.8) mm; Pre-column: Porasil B, 0.3 m</td>
<td>50 (90)</td>
<td>10-port (90)</td>
<td>45</td>
<td>5.0</td>
<td>260</td>
<td>0.07</td>
</tr>
<tr>
<td>4 (-15 ppm N\textsubscript{2}O doped)</td>
<td>Main: Molecular Sieve 5A, 3.3 m, 4.8 (3.8) mm; Pre-column: Unibeads 15, 2 m</td>
<td>120 (68)</td>
<td>10-port (85)</td>
<td>140</td>
<td>10.0</td>
<td>365</td>
<td>1.7</td>
</tr>
</tbody>
</table>
even when the GC is without power contribute to rapid stabilization (5-10 min) when power is restored. The flow control module uses crimped capillary tubing for purge lines, a mass flow controller (Model FC-260, Tylan General, Torrance, CA) for the main columns, and a differential pressure flow controller (Porter Instruments, Inc., Hatfield, PA) for backflushing the precolumns. As the ER-2 altitude increases, the pressure in the aircraft payload area is allowed to decrease to 300 mbar and then is maintained at that level. To eliminate any sensitivity to this pressure change, the exhaust lines of each ECD and sample loop are separately controlled to 975 ± 5 mbar.

The ECDs for channels 2 and 3 are manufactured by Valco (Model 140BN) and for channels 1 and 4 by Shimadzu (Model GC-Mini-2, Tokyo, Japan). Under identical GC conditions, the substitution of the Valco radioactive ECD for the Shimadzu ECD results in a 2.3 (SF6 at 3 parts per trillion, ppt) to 28 (N2O at 3000 ppt) mbar.

Our electrometers are based on the original Shimadzu GC-Mini-2 design and are modified for frequency output. The Valco ECD is so sensitive that the electrometer was run at a standing current of about one tenth of that of the Shimadzu.

Control of the instrument modes and data acquisition is provided by a 80486-based computer (Ampro Computers, Inc., Sunnyvale, CA), interface board, and flash-RAM storage disk. The PC interface board accommodates custom boards for analog-to-digital and TTL control functions. Another custom board uses a dedicated microprocessor to measure the ECD frequency to-digital and TTL control functions. Another custom board provided by a 80486-based computer (Ampro Computers, Inc., Sunnyvale, CA), interface board, and flash-RAM storage disk.

Results and Discussion

ACATS-IV test flights occurred in February 1994, followed by science flights for the ASHOE/MAESA campaign. Principal deployment locations were the NASA Ames Research Center Moffett Field, CA; Barbers Point, HI; and Christchurch, New Zealand during four separate periods (March-April, May-June, July-August, and October-November, 1994). Data for many of the species in Table 2 were collected on 22 flights. An example of a time series from the flight of November 4 is shown in Figure 3.

Table 2. Data for ACATS-IV During ASHOE/MAESA

<table>
<thead>
<tr>
<th>Species</th>
<th>Precision, %</th>
<th>Calibration Gas Mixing Ratio, ppt</th>
<th>Typical Stratospheric Mixing Ratio, ppt</th>
<th>Atmospheric Lifetime, yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFC-11</td>
<td>±0.4%</td>
<td>156.9 (272.1) 12-270 ppt</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>CFC-113</td>
<td>±0.7 ppt</td>
<td>48.8 (83.3) 18-85 ppt</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>CH3CCl3</td>
<td>±0.7 ppt</td>
<td>80.3 (129.5) 2-125 ppt</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>CCl4</td>
<td>±0.8 ppt</td>
<td>63.7 (110.7) 5-115 ppt</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>N2O</td>
<td>±0.9%</td>
<td>177.0 (311.7) 30-315 ppt</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>SF6</td>
<td>±0.04 ppt</td>
<td>1.92 (3.1) 1.9-3.1 ppt</td>
<td>3200</td>
<td></td>
</tr>
<tr>
<td>CFC-12</td>
<td>±0.6%</td>
<td>290.0 (535.2) 150-550 ppt</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Halon-1211</td>
<td>±0.05 ppt</td>
<td>1.9 (3.7) 0.3-3.8 ppt</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>±18 ppb</td>
<td>293.1 (545.7) 450-600 ppb</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>CH4</td>
<td>±1.5%</td>
<td>1.058 (1.75) 1.0-1.8 ppm</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Accuracy is <2% absolute error (1 s.d.) plus precision. Detection limit is <2% of tropopause value. ppb = parts per billion.

The average precision during the last 7 flights is represented in percent for large SNR peaks and in mixing ratio for small peaks.

Low and high (in parentheses) values of calibration standards are in the same units as in column of stratospheric mixing ratios (dry).
A wide variety of scientific issues can be addressed by the large group of species measured by ACATS-IV. The 5 Cl- and 1 Br-containing species compose about 80% of total organic Cl and about 12-18% of total organic Br entering the stratosphere, respectively. The remaining organic halogen-containing species can be estimated from other measured trace gases using correlations between long-lived species. These correlations, derived either from previous observations or from models, permit the calculation of total organic and inorganic Cl \cite{Woodbridge1995} and Br.

ACATS-IV also measures species with a range of atmospheric lifetimes from ~5 yr for CH$_3$CCl$_3$ to ~3200 yr for SF$_6$ (Table 2). The measurement of SF$_6$ permits the calculation of the mean age of an air mass because of its long lifetime and linear growth rate (~0.28 ppt yr$^{-1}$) \cite{IPCC1995}. At the maximum altitude of the ER-2 aircraft (~21 km), the average age of the midlatitude air samples in Figure 3 is about 3.5 yr, while for the tropics the age is less than 1.5 yr. The correlation slope between two long-lived species yields the ratio of their stratospheric lifetimes \cite{Plumb1992}. When the correlation includes a species for which the lifetime is well-established (e.g., CFC-11 at about 50 yr, \cite{WMO1995} the lifetime of the other species can be determined.

When combined with separate ER-2 measurements of H$_2$O, the ACATS-IV measurements of CH$_4$ and H$_2$ can constrain the total hydrogen budget in the lower stratosphere. In Figure 3, H$_2$ shows very little variability during the flight, and is inversely correlated with CH$_4$. These, and other issues will be developed in forthcoming publications using the ASHOE/MAESA data set.

Acknowledgments. We gratefully acknowledge the ER-2 pilots, Lockheed engineering staff, and the ASHOE/MAESA program management. JWE would like to acknowledge S. Stearns, J. Frank, and R. Weiss, for thoughtful suggestions on design. Support for this work has been provided by NASA's High-Speed Research and Upper Atmosphere Research Programs and the Atmospheric Chemistry Project of the NOAA Climate and Global Change Program.

References

J. W. Elkins, R. C. Myers, S. A. Montzka, J. H. Butler, T. M. Thompson, E. J. Dlugokencky, P. C. Novelli, NOAA Climate Monitoring and Diagnostics Laboratory, 325 Broadway, Boulder, CO 80303 (e-mail: jelkins@cmmd.noaa.gov)

D. W. Fahey, R. J. McLaughlin, T. L. Thompson, R. H. Winkler, NOAA Aeronautics Laboratory, 325 Broadway, Boulder, CO 80303

J. M. Gilligan, Dept. of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235

S. J. Ciceria, U.S. West Communications, 700 West Mineral, Littleton, CO 80120

P. J. Fraser, L. P. Steele, M. P. Lucarelli, CSIRO/DAR, Mordialloc, Victoria, 3195 Australia.

(Received July 31, 1995; revised December 13, 1995 accepted January 2, 1996.)